Fyn to stably cluster acetylcholine receptors

نویسندگان

  • P. Angelo Marangi
  • Simon T. Wieland
  • Christian Fuhrer
چکیده

lustering of acetylcholine receptors (AChRs) is a critical step in neuromuscular synaptogenesis, and is induced by agrin and laminin which are thought to act through different signaling mechanisms. We addressed whether laminin redistributes postsynaptic proteins and requires key elements of the agrin signaling pathway to cause AChR aggregation. In myotubes, laminin-1 rearranged dystroglycans and syntrophins into a laminin-like network, whereas inducing AChR-containing clusters of dystrobrevin, utrophin, and, to a marginal degree, MuSK. Laminin-1 also caused extensive coclustering of rapsyn and phosphotyrosine with AChRs, but none of these clusters were observed in rapsyn / myotubes. In parallel with clustering, laminin-1 induced tyrosine phosphorylation of AChR and subunits. C Staurosporine and herbimycin, inhibitors of tyrosine kinases, prevented laminin-induced AChR phosphorylation and AChR and phosphotyrosine clustering, and caused rapid dispersal of clusters previously induced by laminin-1. Finally, laminin-1 caused normal aggregation of AChRs and phosphotyrosine in myotubes lacking both Src and Fyn kinases, but these clusters dispersed rapidly after laminin withdrawal. Thus, laminin-1 redistributes postsynaptic proteins and, like agrin, requires tyrosine kinases for AChR phosphorylation and clustering, and rapsyn for AChR cluster formation, whereas cluster stabilization depends on Src and Fyn. Therefore, the laminin and agrin signaling pathways overlap intracellularly, which may be important for neuromuscular synapse formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laminin-1 redistributes postsynaptic proteins and requires rapsyn, tyrosine phosphorylation, and Src and Fyn to stably cluster acetylcholine receptors

Clustering of acetylcholine receptors (AChRs) is a critical step in neuromuscular synaptogenesis, and is induced by agrin and laminin which are thought to act through different signaling mechanisms. We addressed whether laminin redistributes postsynaptic proteins and requires key elements of the agrin signaling pathway to cause AChR aggregation. In myotubes, laminin-1 rearranged dystroglycans a...

متن کامل

Src, Fyn, and Yes are not required for neuromuscular synapse formation but are necessary for stabilization of agrin-induced clusters of acetylcholine receptors.

Mice deficient in src and fyn or src and yes move and breathe poorly and die perinatally, consistent with defects in neuromuscular function. Src and Fyn are associated with acetylcholine receptors (AChRs) in muscle cells, and Src and Yes can act downstream of ErbB2, suggesting roles for Src family kinases in signaling pathways regulating neuromuscular synapse formation. We studied neuromuscular...

متن کامل

Src-class kinases act within the agrin/MuSK pathway to regulate acetylcholine receptor phosphorylation, cytoskeletal anchoring, and clustering.

Synaptogenesis at the neuromuscular junction requires agrin-induced stable localization of acetylcholine receptors (AChRs) at the endplate. The effects of agrin are transduced by the muscle-specific receptor tyrosine kinase (MuSK). This study provides evidence that Src-class protein tyrosine kinases mediate the effects of agrin-activated MuSK to regulate clustering and anchoring of AChRs in ske...

متن کامل

Binding of the nicotinic acetylcholine receptor to SH2 domains of Fyn and Fyk protein tyrosine kinases.

The nicotinic acetylcholine receptor (AChR) is phosphorylated on tyrosine both in vitro and in vivo. To identify the protein tyrosine kinase that phosphorylates the receptor, we have previously cloned and characterized two protein tyrosine kinases, Fyn and Fyk, that are highly expressed in Torpedo electric organ, a tissue enriched in the AChR. Both kinases were shown by coimmunoprecipitation to...

متن کامل

Cholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction.

Stabilization and maturation of synapses are important for development and function of the nervous system. Previous studies have implicated cholesterol-rich lipid microdomains in synapse stabilization, but the underlying mechanisms remain unclear. We found that cholesterol stabilizes clusters of synaptic acetylcholine receptors (AChRs) in denervated muscle in vivo and in nerve-muscle explants. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002